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ABSTRACT: We have conducted large-scale screening of zeolite materials for CO2/CH4 and CO2/N2 membrane separation
applications using the free energy landscape of the guest molecules inside these porous materials. We show how advanced
molecular simulations can be integrated with the design of a simple separation process to arrive at a metric to rank performance
of over 87 000 different zeolite structures, including the known IZA zeolite structures. Our novel, efficient algorithm using
graphics processing units can accurately characterize both the adsorption and diffusion properties of a given structure in just a few
seconds and accordingly find a set of optimal structures for different desired purity of separated gases from a large database of
porous materials in reasonable wall time. Our analysis reveals that the optimal structures for separations usually consist of
channels with adsorption sites spread relatively uniformly across the entire channel such that they feature well-balanced CO2
adsorption and diffusion properties. Our screening also shows that the top structures in the predicted zeolite database
outperform the best known zeolite by a factor of 4−7. Finally, we have identified a completely different optimal set of zeolite
structures that are suitable for an inverse process, in which the CO2 is retained while CH4 or N2 is passed through a membrane.

■ INTRODUCTION

Elevated CO2 concentrations in the atmosphere are considered
to be the primary cause of global warming.1 Because of the
ever-increasing amount of CO2 emissions and our continuing
reliance on fossil fuels, it remains imperative to search for
various methods to mitigate the emission process. Among many
suggested solutions, carbon capture and sequestration (CCS) is
emerging as a viable technique:2 CCS consists of utilizing
materials to capture CO2 emissions from point sources such as
electric power plants, cement and steel plants, or natural gas
field and injecting the adsorbed CO2 molecules to geological
reservoirs. Some of the main barriers for the large-scale
implementation of CCS are the energy requirements and cost
of the capture process.
The currently available technology uses amines to selectively

absorb CO2. These amines are very efficient in absorption of
CO2, but the regeneration of the amine solution is relatively
energy intensive. Alternative technologies, such as adsorption
by adsorbents3 or separations using membranes,4 have the

potential to significantly reduce the energy costs. Both
technologies depend on the development of novel materials
that have optimal properties for a given separation, with
important classes of materials being nanoporous solids, such as
zeolites and metal−organic frameworks.3,5−8 By changing the
pore topology and chemical composition, one could, in
principle, synthesize millions of different materials, making it
difficult to experimentally characterize and test all these
materials. This gives a great opportunity for molecular
simulations to identify the optimal materials in silico and
guide the direction of the experimental research.
To this end, we present a novel computational approach that

lets us efficiently predict the permeation of a material for
membrane separation appications. Recently, there have been
several articles that pertain to computational screening of a
large database of porous materials in search for optimal
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materials for CCS.3,9−14 However, most of these calculations
focus on adsorption processes; in contrast, far less attention has
been given to screening for membrane processes.15,16 The main
reason for this is that the screening of membranes requires, in
addition to the adsorption properties, also information about
the diffusion coefficients. However, most diffusion coefficient
calculations require expensive molecular dynamics (MD)
simulations, and as such, much work in the past has focused
on analyzing only 10−20 structures.9 To avoid conducting MD
simulations for thousands of structures, one can apply a
geometric criterion to select those materials for which one
component can enter but not the other.16−18 This is a very
efficient method to screen materials with very high diffusive
selectivity, but not necessarily for high permeability. Moreover,
the geometric approach ignores the energy interactions
between the guest particle and the host framework atoms,
which leads to predicted diffusion properties that are
independent of the specific chemistry used to functionalize a
material. In this work, we demonstrate that a reliable estimate
of the diffusion coefficient can be obtained from a free energy
calculation. In this approach, we take full advantage of the
information contained within the free energy landscape
throughout the entire unit cell of the crystal structure and
apply the transition-state theory (TST) to calculate the
diffusion properties.19,20 Mapping this algorithm to the high-
throughput processing power of the graphics processing units
(GPUs), we have accurately characterized the adsorption and
the diffusion properties of over 87 000 experimental Interna-
tional Zeolite Association (IZA) structures and predicted pure-
silica zeolite structures from Deem’s database.21,22 For the
predicted zeolite database, PCOD (Predicted Crystallography
Open Database), a set of 330 000 structures within +30 kJ/mol
Si of α-quartz was further reduced to 139 397 by removing
structures with largest free-sphere diameter below 3.25 Å.23

From the reduced set, we selected over 87 000 zeolite
structures that have orthogonal unit cells to facilitate
calculations. Similar work has been conducted by Haldoupis
et al., but their approach was limited to computing diffusion
coefficients of spherical molecules such as CH4.

24 Our method
can compute diffusion coefficients of both spherical and
nonspherical molecules within a single structure in just a few
seconds, providing the speed-up required to screen thousands
of different structures. Moreover, our algorithm explores the
entire channel profile and identifies multiple channels and free-
energy barrier locations, which can provide a more accurate
picture of diffusion in porous materials. At this point, it is
important to note that zeolitic membranes have been
synthesized.25,26 However, these studies have been limited to
a few pore topologies, so an important practical question we
would like to address is whether these materials are close to the
optimal performance, or whether significant gains can be
expected if one would try to synthesize a membrane using a
different zeolite topology.
To illustrate how our screening can be used to find the

optimal material, we use as an example the separation of CO2
from CH4 in natural gas reservoirs. Natural gas reservoirs may
contain up to 70% CO2, and the production of these reservoirs
would require the separation of CO2 from the natural gas and
injection back into the reservoir. As CH4/CO2 has high
pressure, membranes are ideal to carry out this separation
efficiently. At this point, it is important to emphasize that the
ideal material for a separation depends on the actual process
requirements. We use our screening approach to illustrate this

point with a simple model that mimics the separation of CH4
from CO2 at conditions typical of a natural gas reservoir. The
increase in efficiency of our method allows us to screen many
materials and identify the optimal structures for an entire class
of materials. Establishing such a theoretical limit provides
important guidance for future material synthesis. Our study
identifies the general characteristics of the best-performing
structures. It can be expected that, in other classes of materials,
structures with similar characteristics will also perform very
well.

■ RESULTS AND DISCUSSION
The transport of molecules through a membrane can be
characterized by its permeability. The permeability is defined as
the product of the solubility and the diffusion coefficient of the
gas molecules. As such, permeability is a crucial component for
evaluating membrane performance,4 and it requires computa-
tion of both adsorption and diffusion properties of the system.
For the adsorption part, we use existing computational methods
based on GPUs.12 The methodology used to compute the
diffusion coefficients described in the Methods section has been
implemented for this work. We have selected a set of
representative experimental zeolite structures from the IZA
database to test our method. Figure 1 compares the self-

diffusion coefficient (DS) of CO2, N2, and CH4 gas molecules at
infinite dilution and T = 300 K for the two methods, and it
shows that our method provides a reasonably accurate
description of the diffusion. The discrepancies between the
two methods result from a variety of different reasons such as
correlated hops for large diffusion values19 and the presence of
complicated channel profiles that makes very accurate TST
analysis difficult. In general, the MD simulation wall time scales
with the inverse of DS, becoming intractable in slowly diffusing
systems as hops across a large barrier becomes increasingly rare.
Accordingly, given that our model based on the TST uses an
algorithm where the wall time remains independent of the
diffusive coefficient values, an enormous speed-up (few seconds
versus several weeks) can be gained compared to MD
simulations in structures with small DS.

Figure 1. Comparison of two different methods (MD and GPU-
implemented TST) to compute the self-diffusion coefficients of CO2
(red circles), N2 (blue up-triangles), and CH4 (green down-triangles)
molecules for IZA zeolite structures. The dashed line indicates the
region of perfect agreement between the two methods. The error bars
from the MD simulations are provided for only a few selected zeolite
structures.
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Figure 1 also illustrates that the zeolite data points for CO2

and N2 are concentrated in the highly diffusive region (i.e., DS >
10−9 m2/s), whereas CH4 data points are scattered across a
wider range of DS values. Because the kinetic diameter of CH4

is larger than both CO2 and N2, there exists more structures
with relatively smaller diffusion coefficients for CH4. Also, due
to the long-range electrostatic interactions present for the non-
polar CO2 and N2 molecules with quadruple moments, the
likelihood of finding structures with a relatively high energy
barrier remains small as the contributions of the nonlocal
interactions spread across the entire channel. On the other
hand, the lack of electrostatic interactions in CH4 molecules
translates into free energy landscapes that are determined solely
by short-range interactions from the neighboring framework
atoms, which enhances the likelihood of finding channels with a
narrow, pinched region (i.e., large energy barrier) separating
the adsorption sites for certain topologies.
Next, we explore the different characteristics between CO2/

CH4 and CO2/N2 separations for the zeolite structures. For
analysis, we included over 87 000 predicted zeolite structures in
order to detect possible patterns that can emerge for the entire
class of materials and for selected separations that might not be
obvious in analyzing just a few structures. In most membrane
research, the relative performance of a material is estimated
from a Robeson plot, which gives the relationship between
permeability and the permeation selectivity.27 In all cases, the
permeation selectivity value less than one indicates that the
membrane is selective but the CO2 ends up in the retentate.
Figure 2a,b shows the zeolite Robeson plots for CO2/N2, and

Figure 2c,d shows those for CO2/CH4 separations. We
considered two different methods to compute the adsorption
component of the permeability and permeation selectivity: (1)
using the Henry coefficient, KH, which gives an accurate
description of the adsorption at low pressures and (2) using the
grand canonical Monte Carlo (GCMC) simulations for
obtaining pure component isotherm and applying the ideal
adsorbed solution theory (IAST) for estimating mixture
adsorption at given condition.28 In general, using KH values
overestimates the permeability, as shown in the Robeson plots
in Figure 2a,c (red data points). Since most gas separation
occurs at higher pressures, the uptake values at the actual
separation pressure provides a better measure of permeability
compared to KH. For CO2/N2 separations the flue gas
operating condition of total fugacity equal to 1 bar (14%
CO2 and 86% N2) was used, while for CO2/CH4 the total
fugacity of 10 bar (50% CO2 and 50% CH4) was used. Upon
increasing the pressure, the gas uptake begins to saturate; thus,
the adjusted permeability value based upon GCMC-IAST
becomes smaller at pressures outside of the linear Henry
regime. Because CO2/N2 separation occurs at a lower pressure
compared to CO2/CH4 separation, the overall shift in the data
points in the Robeson plots (indicating decrease in CO2

permeability) in Figure 2c becomes more apparent for CO2/
CH4.
It is instructive to compare our results with the well-known

Robeson plots for polymer materials. For these materials, one
typically observes a limiting behavior, the Robeson upper
bound, as materials that have high selectivity have low

Figure 2. Permeation selectivity as a function of CO2 permeability for (a) CO2/N2 separations ( KH, red; GCMC-IAST, blue), (b) CO2/N2
separations for GCMC-IAST in predicted (blue) and IZA (orange) zeolites, (c) CO2/CH4 separations ( KH, red; GCMC-IAST, blue), and (d) CO2/
CH4 separations for GCMC-IAST in predicted (blue) and IZA (orange) zeolites.
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permeability and materials with high permeability have low
selectivity.27,29 In the literature, deviations from this Robeson
upper bound have been reported for nanoporous materials.30

Figure 2 shows, however, that nanoporous materials have a
qualitatively very different behavior, in which the concept of a
Robeson upper limit has little value. The reason is that the
difference in solubility of guest molecules in these materials can
vary orders of magnitudes, while in the Robeson upper limit, it
is assumed that all materials have a similar solubility.29

In Figure 2, most of the data points in the CO2/N2 Robeson
plot are concentrated in a narrow band of permeation
selectivity values and indicates a general positive correlation
between CO2 permeability and CO2/N2 permeation selectivity.
On the other hand, the data points for the CO2/CH4 Robeson
plots are spread across a wider range of selectivity values with
less meaningful correlations being found between permeability
and selectivity. Because both CO2 and N2 molecules are non-
polar with quadruple moments, linear, and have comparable
kinetic diameters, the diffusion properties of the two gas
molecules are similar. Moreover, the values of KH

N2 of the
entire database are in a much narrower range compared to the
corresponding values of KH

CO2. Accordingly, given this narrow
range of KH

N2 values and similar diffusive properties between
CO2 and N2, the shape of the Robeson plot is dictated largely
by KH

CO2, which is positively correlated in both the permeability
and the permeation selectivity. The CO2/N2 points located
along a narrow band can be also seen in the CO2/CH4
Robeson plot as well. However, additional, more scattered
data points exists in this Robeson plot, which is caused by the
dissimilarity between the CO2 and the CH4 molecules. Most of
these outliers correspond to zeolite structures that possess very
narrow channels, leading to relatively low CH4 diffusion
coefficient values or from different CO2/CH4 adsorption sites.
To identify the structures most promising for CO2/N2 and

CO2/CH4 separations, a suitable metric that can quantify the
material performance needs to be constructed. A diagram that
illustrates the CO2/CH4 separation process is shown in Figure
SI1 (Supporting Information). The target for the CO2/CH4

separation is to obtain a high purity CH4 stream in the retentate
side. The conventional approach in identifying the top
performing structures for such a membrane separation is to
select those materials that have the highest permeability and
selectivity. We use a simple membrane design to illustrate that
from a practical point of view, this criterion does not provide us
the optimal material. The argument that one needs to be in the
upper right corner in the Robeson plot (i.e., high permeability
and selectivity region) assumes that selectivity is equally
important as permeability. Our analysis shows that for a
given separation, one needs a minimum selectivity; the best
material is the one with highest permeability out of all materials
that satisfy this minimum selectivity criterion. Selectivity is the
dominant factor only for separations that require an extremely
high purity. Baker et al. reached a similar conclusion for the N2/
CO2 separation.

4 In an ideal membrane system, the area of the
membrane is assumed to be a measurement of the cost of the
entire process, and this area is shown to be mainly dominated
by and inversely proportional to the CO2 permeability (for
more detailed derivation, see Supporting Information, Section
2). Hence, we can rank those materials that satisfy the
minimum selectivity criterion based on the membrane area that
is required for the separation.
With a working performance metric at hand, we plot the

membrane area as a function of CH4 feed loss (i.e., 1 −
methane recovery) for materials that satisfy the methane purity
criteria of 95% and 99% purities in Figure 3a. The feed loss
gives us the amount of methane that we inject with the CO2 in
the reservoir. As we are screening many materials, a clear trend
emerges with some structures that have nearly ideal properties
and have therefore, an exceptionally high performance.
However, from a synthetic point of view, it might be very
difficult to synthesize exactly these materials. In Figure 3a, the
box representation is used to indicate the exceptional materials
and show the general trend: the lines above and below the
boxes show the structures with good and poor performance,
and the boxes show the trends as represented by a large
number of structures that have the same properties. In the

Figure 3. (a) Membrane area as a function of CH4 feed loss for zeolite structures that satisfy the minimum purity requirement of 95% (red) and 99%
(purple). Amean,95% is defined as the logarithm averaged area with the given 95% purity. The segments within each box from bottom to top represent
the 5%, 25%, 50%, 75%, and 95% points for each bin with the circle indicating the average value for the whole bin. (b) Heat of adsorption as a
function of CO2 KH for all zeolite data sets (black), selected candidate sets that satisfy the 95% purity requirement (red), and the top 1% best-
performing structures from the set of all candidate structures (blue).

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja400267g | J. Am. Chem. Soc. 2013, 135, 7545−75527548



following, we focus on these general trends. As expected, the
membrane area tends to increase for smaller membrane feed
loss, indicating that if we require a higher selectivity, we will
have less materials to choose from.
For a specified purity requirement, we can isolate the top

structures and identify common features that separate these
structures from the others. For example, we plot the CO2 heat

of adsorption as a function of the Henry coefficient, KH
CO2, for

the top 1% structures that satisfy the product purity
requirement of 95%. The best structures possess Henry
coefficient that is in the intermediate range (10−5 < KH

CO2 <
10−4 mol/(kg·Pa)). In structures that have very small KH

CO2,
the overall CO2 permeability and the permeation selectivity is
too small, making them suboptimal for membrane separations.

Figure 4. CO2 permeability as a function of largest free sphere diameter for (a) 95% CH4 purity and (b) 99.9% CH4 purity for all the zeolites in the
data set (solid black), the candidate subsets that fulfill the purity requirement (solid red), and the top 1% structures (i.e., top 1% in area with
recovery >90%) (open blue).

Figure 5. Permeation selectivity as a function of N2 permeability for (a) CO2/N2 inverse separations (KH, red; GCMC-IAST, blue) and (b) CO2/N2
inverse separations for GCMC-IAST in predicted (blue) and IZA (orange) zeolites. Permeation selectivity as a function of CH4 permeability for (c)
CO2/CH4 inverse separations (KH, red; GCMC-IAST, blue) and (d) CO2/CH4 inverse separations for GCMC-IAST in predicted (blue) and IZA
(orange) zeolites.

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja400267g | J. Am. Chem. Soc. 2013, 135, 7545−75527549



In structures that have too large of KH
CO2 ( KH

CO2 > 10−3 mol/
(kg·Pa)), one key factor comes into play that degrade
performance: there is an inverse relationship between KH

CO2

and DS, as can be seen from Figure SI3. Structures with large
KH

CO2 possess strong adsorption sites that cause the diffusion
rate to decrease as the effective barrier separating one
adsorption site to another becomes large. Among structures
that are inside the optimal Henry coefficient range, the optimal
structures tend to have low heat of adsorption values (blue data
points in Figure 3b). A high heat of adsorption often
corresponds to strong adsorption sites, which lead to low
diffusion coefficients.
At this point, it is instructive to compare our results with

those from geometrical screening.16 Geometrical screening
identifies the best materials as the ones that possess pore
diameter values similar to the kinetic diameter of the molecules
that have to be separated. Intuitively, this makes sense as one
can imagine that the separation process will be optimized when
one guest molecule species is just small enough to diffuse across
the channel, while the larger one being blocked. To gain
insights in the differences between the two methods, we plot
the CO2 permeability as a function of the largest free sphere
diameter (Df)

23 for all structures shown in Figure 4. The largest
free sphere diameter is a measure of the size of the molecule
that can enter a particular structure. A simple geometric
criterion is to select those structures that have a Df large enough
for CO2 to enter but too small for CH4. In our analysis, two
important points emerge that cannot be deduced from a pure
geometrical analysis. First, few high performing structures
possess very large Df values, which deviates from what is
predicted from geometrical analysis. Because most geometrical
analysis focuses on selectivities, only the structures that consists
of pore diameters that are close to the size of the guest
molecules are deemed interesting and worthwhile for
investigation. Our energy-based method reveals that for 95%
purity requirement, one can identify structures that lie outside
of this region (blue data points for Df > 4 Å in Figure 4a). Once
the desired purity is set to be very large at 99.9% (Figure 4b),
the best-performing structures tend to be concentrated in the
region Df = 3−4 Å. For such a high purity, it is essential to have
high selectivity and the geometric criterion ensures this. The
second important point is that our method can readily
differentiate large and small CO2 permeability values in
structures that are located within the optimal Df values (3−4
Å) as our method can compute accurate DS values. Accordingly,

the set of potential candidates for membrane separation can be
further refined using the energy-based analysis.
Until now, we have assumed that CO2 is the component with

the highest permeation. As this is the case for most known
porous materials, one normally does not consider a separation
where CH4 or N2 is assumed to be the component with the
highest permeability. Such a material, however, would be of
interest as it would allow for separation in which the CO2 is
retained while preferring permeability of CH4 or N2. This
process can be attractive since in the conventional process, the
CO2-rich stream is the low-pressure permeate and hence needs
to be repressurized for transportation and storage, while in the
inverse process, the CO2-rich stream is the retentate and
repressurizing is not required. Such process will be particularly
attractive for those natural gas fields in which the CO2
concentration exceeds 50%. Figure 5 shows the Robeson
plots corresponding to this separation where the same data
points from Figure 2 were plotted with inverted permeation
selectivity values. In general, the permeability as well as the
selectivity for the top performing structures are predicted to be
lower as the number of structures that possess larger CH4 and
N2 uptake values compared to the CO2 uptake values at the
interested separation process is very small. We did not identify
any of the known experimental (IZA) zeolite structures that
possessed CH4/CO2 or N2/CO2 permeation selectivity values
>10. On the other hand, screening of the predicted zeolite
structures does reveal a large number of structures that would
allow for such a separation, suggesting such a separation is
possible.
It is interesting to make comparisons between the best

predicted zeolite structure and the best IZA structure we
identified from our screening analysis. In our evaluation, the
membrane area, which is dominated by and inversely
proportional to the CO2 permeability is used as a metric that
needs to be minimized to have the best membrane separation
performance. The ratio between the smallest membrane area
found in the IZA and the PCOD structures are defined as the
performance gain.22 For CO2/CH4, this gain ranges from 4 to 7
for differing minimum selectivity requirements that range from
85 to 98% purity with the recovery set at 0.90. Among the IZA
structures, ABW and GIS zeolite structures were identified to
have the largest CO2 permeability as both of these structures
possess relatively strong CO2 adsorption sites spread
throughout the entire main channels. The KH

CO2 values
computed at T = 300 K are 5.42 × 10−5 and 1.45 × 10−4

mol/(kg·Pa), while the DS values are 8.01 × 10−9 and 3.51 ×

Figure 6. (a) CO2 free energy landscape within a unit cell of GIS structure, which is predicted to be one of the best structures for both CO2/N2 and
CO2/CH4 separations. (b) CO2 free energy landscape within a unit cell of PCOD8198030 structure, which is predicted to be one of the best
structures for CH4/CO2 inverse separation. The blue regions indicate low-energy adsorption sites (minima values of −4493 and −6775 K for GIS
and PCOD8198030, respectively), the red indicates relatively high energy regions while the rest represents inaccessible regions.
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10−9 m2/s, respectively, for ABW and GIS. These values
indicate that the best IZA structures do not possess exceptional
adsorption or diffusive properties but are well-balanced in both.
Figure 6a shows the CO2 free energy landscape within the GIS
structure where blue regions indicate relatively strong
adsorption regions. The best PCOD structures for CO2/CH4
is identified to be PCOD8186909. Similar to ABW and GIS,
the best predicted structures also show well-balanced
adsorption and diffusion properties. Finally, for the structures
optimal for the inverse process shown in Figure 5, the best
structures tend to have strong CO2 binding sites that reduce its
diffusion coefficient to lower the CO2 permeability. Con-
currently, these structures possess strong enough CH4 binding
sites with fast enough diffusive properties for CH4 to make
them optimal for the inverse process. A sample structure (i.e.,
PCOD8198030) is shown in Figure 6b, where a significant
energy barrier exists in the main channel for CO2 molecules
with the strongest adsorption sites.

■ CONCLUDING REMARKS
In summary, we have implemented an efficient method to
determine diffusion coefficients based on the application of the
transition state theory to the energy landscape of a large
collection of structures. These diffusion properties, when
combined with adsorption properties, can characterize the
membrane performance for a given nanoporous material.
Applying this method to a database of over 87 000 predicted
zeolite structures, we found that for CO2/CH4 separations, the
best-performing predicted structure can improve the perform-
ance as measured by the required area of a membrane by a
factor of 4−7 compared to the best known zeolite structure.
Robeson plots for the CO2/CH4 separation reveal two

distinct subclasses of structures: (1) a group with a relatively
low permeation selectivity which varies in proportion to the
permeability of CO2, and (2) a group with much higher
permeation selectivities which is presumed to arise mainly from
diffusion selectivity, i.e., molecular sieving. These two different
groups are not as clearly observed for the CO2/N2 separation,
since the two particles have more similar dimensions, making
molecular sieving less possible. The best material achieves a
high selectivity without creating adsorption sites that slow
down the diffusion. A simple experimental signature to
recognize such a material for CO2/CH4 separation is a material
that has intermediate range of CO2 Henry coefficient (i.e., 10

−5

< KH
CO2 < 10−4 mol/(kg·Pa)) and a relatively low heat of

adsorption (i.e., −30 to −20 kJ/mol).

■ METHODS
Although we focus mostly on zeolite structures with CO2, N2, and
CH4 as resident gas molecules, the techniques developed to compute
the diffusion coefficients can readily extend to other gas molecules and
to other materials. In our calculations, we assume that the zeolites are
perfect, infinitely large crystals such that the periodic boundary
conditions can be used. The number of unit cells is chosen such that
the simulation box extends at least twice the cutoff radius of 12 Å in all
three perpendicular directions. The host framework atoms are
assumed to be rigid, and the pairwise gas−gas and gas−host
interactions consist of Lennard-Jones forces and electrostatic
interactions. The force fields developed by Garcia-Perez et al. are
used in all of our work as they have been shown to be transferrable for
variety of zeolite structures.31 The temperature is set to be 300 K in all
of the work. The MD simulations were conducted utilizing the CPU
cores in our own cluster while the efficient diffusion coefficient
calculations and the GCMC simulations were conducted utilizing the

NVIDIA Tesla C2050 GPU cards from the Dirac Cluster at the
National Energy Research Supercomputing Center (NERSC).

Molecular Dynamics Simulations. For an MD simulation, the
gradient of the potential energy with respect to position is calculated
for each adsorbate particle, including the van der Waals forces and
Coulombic forces. This energy gradient manifests as a force which,
constrained by intramolecular considerations, results in an acceleration
according to Newton’s second law of motion. In an MD simulation,
the force on each particle is sampled periodically, allowing an update
to each particle’s position and velocity. With sufficiently small time
steps (0.5 fs) and sufficiently long simulations (>1 ns), a collection of
trajectories produced from MD simulations can be analyzed to
calculate the self-diffusion coefficient.32 In this study MD simulations
were carried out in the canonical ensemble, using a Nose−́Hoover
thermostat.

Efficient Diffusion Coefficient Calculations. At the start of the
simulation, an energy grid that contains detailed information about the
free energy profile of the gas molecules inside the porous material is
constructed and subsequently analyzed to obtain both the adsorption
and the diffusion properties of the system. A sufficiently fine mesh size
of 0.1 Å is chosen for all structures and the resulting grid is
superimposed on top of a single unit cell, where each of the grid points
represents the total pairwise free-energy summation between the gas
molecule and all of the framework atoms. For gas molecules such as
CO2 and N2, which cannot be represented as a point particle, 250
randomized center-of-mass rotations of the molecule are conducted on
the grid point to obtain an average Boltzmann-weighted free energy of
the gas molecule at that point. The expression for free energy, Fi, at a
specific grid point is expressed as follows:

= −
∑ −= ( )

F k T
E k T

N
log

exp /j
N

j
i B

0 B

tot

tot

where Ntot = 250 and Ej is the potential energy of CO2 (or N2)
molecule of a given randomized j configuration. For zeolite structures,
the number of energy grid points is typically on the order of 106 and
107, and the calculations only take a few seconds using our GPU code.

From the constructed energy grid, points where Fi < 15kBT are
considered accessible, while the rest are inaccessible. The choice of the
15kBT cutoff was made such that energy values higher would be
considered inaccessible during a typical experimental time scale.12 The
binary information (i.e., accessible/inaccessible) stored in a separate
grid can be used to determine both the number of the channels and
the channel direction. For example, in determining the number of
channels along a given spatial direction (e.g., x direction), a two-
dimensional flood fill algorithm at x = 0 along the y,z plane is used to
combine the adjacent accessible points together. The flood fill
algorithm implemented here is similar to the one we utilized to
determine blocked regions in porous materials.12 After identfiying the
distinct number of accessible regions at x = 0, each of these sections
are analyzed separately in subsequent analysis. To analyze the entire
channel, we compute the sum of Boltzmann weights along the y,z
plane slice at a given x value for all grid points that are connected to
the initial accessible region at x = 0. The algorithm continues from x =
0 to x = lx, where l x is the unit cell size along the x-direction. If at any
point, we encounter a dead-end (i.e., y,z plane where sum of
Boltzmann weights is zero) we conclude that the channel does not
exist along this region and proceed to the next possible candidate
either along the same x direction or along y or z directions. Upon
successful traversal to the end of the unit cell, the sum of Boltzmann
weights for each value of x can be utilized to identfiy the peak/trough
of the free energy profiles for that specific channel along the x-
direction. The entire free-energy profile is utilized to compute the
diffusion coefficient given that there can be multiple lattice sites along
the same channel. The diffusion coefficient value of an individual
channel can be obtained from the TST33,34 taking into account
multiple hop-rates generated from the analysis assuming a random
walk along the lattice sites. The total diffusion coefficient value along a
given direction (e.g Dx) consists of linear combination of the channel
diffusion coefficients weighted by its local Henry coefficient values.
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Finally, the total self-diffusion coefficient is calculated as DS =
1/3 (Dx +

Dy + Dz).
Throughout this work, the effects of adsorbate concentration on the

diffusion behavior were neglected in order to allow for extremely fast
diffusion characterization. The sensitivity of the diffusion coefficients
for different loading values will vary based on the structure topology,
but is not expected to impact these results significantly. In fact, the
assumption of constant diffusion coefficient is commonly used in
applications.32

Grand Canonical Monte Carlo Simulations. GCMC simu-
lations were utilized to obtain the gas uptake value as a function of
fugacity. In GCMC, the chemical potential, volume, and temperature
are kept constant throughout the simulation and random insertion,
deletion, and translation moves were used to propagate the MC
system from one cycle to the next. We have utilized various efficient
techniques such as density biased sampling, energy grid usage, and
parallelization of energy calculations to reduce the average overall wall
time of a single GCMC simulation to under a minute.35 The number
of equilibration cycles and production cycles were set respectively at
250 000 and 100 000. The mixture isotherms were obtained from the
computed pure isotherm data using the IAST, which has been
demonstrated to be generally applicable to make good predictions
about mixture behaviors for various porous materials.28 It is important,
however, to note that some particular cases may need some variant
theories of IAST,36 which is regarded to be out of the scope for this
current work.
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